2,876 research outputs found

    Multi-Wavelength Monitoring of the Changing-Look AGN NGC 2617 during State Changes

    Get PDF
    Optical and near-infrared photometry, optical spectroscopy, and soft X-ray and UV monitoring of the changing-look active galactic nucleus NGC 2617 show that it continues to have the appearance of a type-1 Seyfert galaxy. An optical light curve for 2010-2017 indicates that the change of type probably occurred between 2010 October and 2012 February and was not related to the brightening in 2013. In 2016 and 2017 NGC 2617 brightened again to a level of activity close to that in 2013 April. However, in 2017 from the end of the March to end of July 2017 it was in very low level and starting to change back to a Seyfert 1.8. We find variations in all passbands and in both the intensities and profiles of the broad Balmer lines. A new displaced emission peak has appeared in Hβ. X-ray variations are well correlated with UV-optical variability and possibly lead by ̃2-3 d. The K band lags the J band by about 21.5 ± 2.5 d and lags the combined B + J bands by ̃25 d. J lags B by about 3 d. This could be because J-band variability arises predominantly from the outer part of the accretion disc, while K-band variability is dominated by thermal re-emission by dust. We propose that spectral-type changes are a result of increasing central luminosity causing sublimation of the innermost dust in the hollow bi-conical outflow. We briefly discuss various other possible reasons that might explain the dramatic changes in NGC 2617.Fil: Oknyansky, V. L.. Sternberg Astronomical Institute; RusiaFil: Gaskell, C. M.. Department of Astronomy and Astrophysics. University of California. Santa Cruz; Estados UnidosFil: Mikailov, K. M.. Shamakhy Astrophysical Observatory, National Academy of Sciences. Pirkuli; AzerbaiyánFil: Lipunov, V. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University ; RusiaFil: Shatsky, N. I.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tsygankov, S. S.. Tuorla Observatory, Department of Physics and Astronomy. University of Turku.; FinlandiaFil: Gorbovskoy, E. S.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tatarnikov, A. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Metlov, V. G.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Malanchev, K. L.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Brotherton, M.B.. University of Wyoming; Estados UnidosFil: Kasper, D.. University of Wyoming; Estados UnidosFil: Du, P.. Institute of High Energy Physics. Chinese Academy of Sciences; ChinaFil: Chen, X.. School of Space Science and Physics. Shandong University; ChinaFil: Burlak, M. A.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Buckley, D. A. H.. The South African Astronomical Observatory; SudáfricaFil: Rebolo, R.. Instituto de Astrofisica de Canarias; EspañaFil: Serra-Ricart, M.. Instituto de Astrofisica de Canarias; EspañaFil: Podestá, R.. Universidad Nacional de San Juan; ArgentinaFil: Levato, O. H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    Применение методологии системно-информационного анализа для построения эффективной структуры диспетчерского управления в ЭЭС

    Get PDF
    A method on selection and development of efficient hierarchical dispatching control service in power system has been considered on the basis of quantitative characteristics of integrity property. Taking development of dispatching control service in Azerbaijan power system the paper demonstrates the proposed method.Рассматривается методика выбора и построения эффективной иерархической системы диспетчерского управления ЭЭС на основе количественной характеристики свойства целостности. Методика демонстрируется на примере построения структуры диспетчерского управления Азербайджанской энергосистемой

    Extensive sampling sheds light on species-level diversity in Palearctic Placobdella (Annelida: Clitellata: Glossiphoniiformes)

    Get PDF
    The bloodfeeding leech genus Placobdella is dominated by North American diversity, with only a single nominal species known from Central America and one from the Palearctic region. This is likely due to considerable underestimation of Palearctic biodiversity, but investigations into potential hidden diversity are lacking. To shed light on this, the present study introduces new data for specimens initially identified as Placobdella costata from Ukraine (close to the type locality), Italy, Germany, Latvia, Montenegro, Bulgaria, Slovenia, Turkey, Azerbaijan, Tunisia, and Algeria, and uses both nuclear (Internal Transcribed Spacer [ITS] region) and mitochondrial (cytochrome c oxidase subunit I [COI]) sequence data in phylogenetic and DNA barcoding frameworks, in order to better understand species-level diversity. Seven independent lineages are present in the trees, five of which show adequate separation at the COI locus to suggest their unique species-level status (COI distances between these clades range from 4.86 to 8.10%). However, the ITS data suggest that speciation is recent or incipient in these clades, and that not enough time has passed for clear separation at this locus. We discuss the evolutionary and taxonomic implications of our findings and speculate on dispersal events that may have contributed to shaping this pattern of geographic distribution

    Long-term multiwavelength monitoring and reverberation mapping of NGC 2617 during a changing-look event

    Full text link
    We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC~2617 carried out from 2016 until 2022 and covering the wavelength range from the X-ray to the near-IR. The facilities included the telescopes of the SAI MSU, MASTER Global Robotic Net, the 2.3-m WIRO telescope, Swift, and others. We found significant variability at all wavelengths and, specifically, in the intensities and profiles of the broad Balmer lines. We measured time delays of ~ 6 days (~ 8 days) in the responses of the H-beta (H-alpha) line to continuum variations. We found the X-ray variations to correlate well with the UV and optical (with a small time delay of a few days for longer wavelengths). The K-band lagged the B band by 14 +- 4 days during the last 3 seasons, which is significantly shorter than the delays reported previously by the 2016 and 2017--2019 campaigns. Near-IR variability arises from two different emission regions: the outer part of the accretion disc and a more distant dust component. The HK-band variability is governed primarily by dust. The Balmer decrement of the broad-line components is inversely correlated with the UV flux. The change of the object's type, from Sy1 to Sy1.8, was recorded over a period of ~ 8 years. We interpret these changes as a combination of two factors: changes in the accretion rate and dust recovery along the line of sight.Comment: 14 pages, 15 figures, accepted by the MNRA

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore